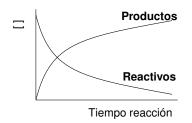
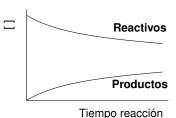
EQUILIBRIO QUÍMICO (Reacciones de Precipitación)

Bachillerato Internacional

Prof. Jorge Rojo Carrascosa

www.profesorjrc.es

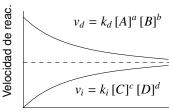

Introducción


Procesos Irreversibles

Procesos Reversibles

$$aA + bB \longrightarrow cC + dD$$

$$aA + bB \rightleftharpoons cC + dD$$



Estado de equilibrio

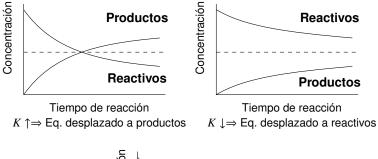
- Reactivos y Productos en contacto.
- El equilibrio no se abandona, excepto si varian la P o la T^a.
- 3 Equilibrio $\implies v_d = v_i$.
- **Section** Estado dinámico. [$]_{eq,react}$ y [$]_{eq,prod}$ son constantes.

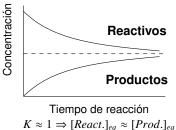
Constante de Equilibrio I

$$v_d = k_d [A]^a [B]^b$$
 $v_d = v_i \Rightarrow k_d [A]^a [B]^b = k_i [C]^c [D]^d$

$$K_c = \frac{k_d}{k_i} = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Donde K_c es la constante de equilibrio, que solamente depende de la temperatura.


$$[K_c] = (mol \cdot L^{-1})^x$$


Si tomamos la LAM en cualquier momento de la reacción, tenemos Q (cociente de reacción),

- Si Q=K ⇒ Equilibrio
- Si Q<K ⇒ La reacción ocurre de izquierda a derecha</p>
- Si Q>K ⇒ La reacción ocurre de derecha a izquierda

Constante de Equilibrio II - Tipos de Equilibrio

Constante de Equilibrio III

EQUILIBRIO HOMOGÉNEO ENTRE GASES

$$\boxed{K_p = \frac{p_C^c p_D^d}{p_A^a p_B^b}} \Rightarrow \boxed{K_p = K_c (RT)^{\Delta_V}}$$

Siendo p_x las presiones parciales de cada gas,

$$[K_c] = (atm)^x$$

Recordar Ley de Dalton de los gases,

$$P_T = \sum P_i = \sum x_i P_T$$

GRADO DE DISOCIACIÓN

- Este parámetro índica el progreso de la reacción
- ② Tanto por uno de moléculas disociadas \Rightarrow 0 < α < 1

$$\alpha = \frac{moles\ que\ han\ reaccionado}{moles\ iniciales} = \frac{x}{n} \qquad \alpha\ \% = \frac{x}{n} \cdot 100$$

Principio de Le Châtelier

Concentración $A + B \rightleftharpoons C + D$

- Si ↑ [] Reactivos ⇒ La reacción se desplaza hacia los productos
- Si ↓ [] Reactivos ⇒ La reacción se desplaza hacia los reactivos

Presión ΔP por cambio de volumen

- Añadir o eliminar un componente gaseoso $\Rightarrow \Delta$ [].
- Añadir un gas inerte a V=cte no afecta al equilibrio.
- Si \uparrow P \Rightarrow \downarrow V \Rightarrow \uparrow [] \Rightarrow La reacción se desplaza hacia el menor n.
- Si \downarrow P \Rightarrow \uparrow V \Rightarrow \downarrow [] \Rightarrow La reacción se desplaza hacia el mayor n.

Temperatura $A + B \rightleftharpoons C \quad \Delta H < 0$

- Si ↑ T^a ⇒ La reacción se desplaza hacia los reactivos
- Si ↓ T^a ⇒ La reacción se desplaza hacia los productos

Equilibrios Heterogéneos y Reacciones por etapas

Reacciones Heterogéneos

$$1000C \rightarrow S(g) + H_2(g) \rightleftharpoons H_2S(g) \qquad K_c = \frac{[H_2S]}{[S][H_2]}$$

$$200C \rightarrow S(l) + H_2(g) \rightleftharpoons H_2S(g) \qquad K'_c = \frac{[H_2S]}{[H_2]}$$

$$-100C \rightarrow S(s) + H_2(g) \rightleftharpoons H_2S(s) \qquad K''_c = \frac{1}{[H_2]}$$

Reacciones por etapas La LAM no se cumple para la etapa global.

$$2NO \rightleftharpoons N_2O_2$$
 $K_1 = \frac{[N_2O_2]}{[NO]^2}$
 $N_2O_2 + O_2 \rightleftharpoons 2NO_2$ $K_2 = \frac{[NO_2]}{[N_2O_2][O_2]}$

La reacción total y su constante de equilibrio vendrá dada por,

$$2NO + O_2 \rightleftharpoons 2NO_2 \qquad \boxed{K = K_1 \cdot K_2}$$

Equilibrios en Precipitación / Producto de solubilidad

REACCIONES DE PRECIPITACIÓN

- Se forma un compuesto iónico.
- Aparición de un precipitado en equilibrio con la disolución.
- Disolución Saturada ⇒ [soluto] ≡ solubilidad

$$A_m B_n(s) \rightleftharpoons A_m B_n(sol) \rightleftharpoons mA^{n+}(aq) + nB^{m-}(aq) \quad \Rightarrow \quad \boxed{K_s = [A^{m+}]^m [B^{m-}]^n}$$

$$s \qquad ms \qquad ns \qquad \Rightarrow \quad \boxed{K_s = (ms)^m (ns)^n}$$

 K_s es el producto de solubilidad o constante de solubilidad. Las [] en $\frac{mol}{l}$ \Rightarrow **Solubilidad molar** ó $\frac{g}{l}$ \Rightarrow solubilidad.

PRODUCTO IÓNICO

 $Q_s = [A^{m+}]^m [B^{m-}]^n < K_s \Rightarrow$ No existe Precipitado, disolución insaturada. $Q_s = [A^{m+}]^m [B^{m-}]^n > K_s \Rightarrow$ Existe Precipitado, disolución sobresaturada $Q_s = [A^{m+}]^m [B^{m-}]^n = K_s \Rightarrow$ Disolución Saturada.

Ejemplos Estequiométricos del producto

Catión y Anión monovalentes

$$AgCl(s) \rightleftharpoons AgCl(sol) \rightleftharpoons Ag^{+}(aq) + Cl^{-}(aq) \Rightarrow \boxed{K_s = s \cdot s}$$

$$s = \boxed{K_s^{1/2}}$$

Catión divalente y Anión monovalente

$$CaF_2(s) \rightleftharpoons CaF_2(sol) \rightleftharpoons Ca^{2+}(aq) + 2Cl^{-}(aq) \Rightarrow \boxed{K_s = s \cdot (2s)^2}$$

$$s = \boxed{\left(\frac{K_s}{4}\right)^{1/3}}$$

Catión trivalente y Anión divalente

$$As_2S_3(s) \rightleftharpoons As_2S_3(sol) \rightleftharpoons 2As^{3+}(aq) + 3S^{2-}(aq) \Rightarrow \boxed{K_s = (2s)^2 \cdot (3s)^3}$$
$$s = \boxed{\left(\frac{K_s}{108}\right)^{1/5}}$$

Efecto Ion Común

APLICACIÓN DEL PRINCIPIO DE LE CHÂTELIER

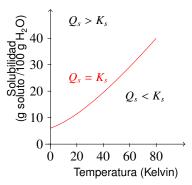
• Disminución de solubilidad $A_m B_n(s) \rightleftharpoons mA^{n+}(aq) + nB^{m-}(aq)$

Al adicionar x Molar de B^{m-} , la $[B^{m-}] = ns + x$; Si $ns < 5 \% x \Rightarrow [B^{m-}] = x$ y la solubilidad sería,

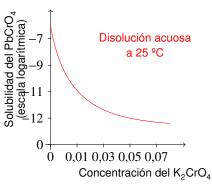
$$k_s = (ms)^m x^n \quad \Rightarrow \quad \left[s = \left(\frac{K_s}{m^m x^n} \right)^{1/m} \right]$$

Aumento de solubilidad

Se añaden ácidos o bases, sustancias que generen complejos, redox,...


$$Fe(OH)_3(s) \rightleftharpoons Fe^{3+}(aq) + 3OH^-(aq)$$

Al añadir ácidos, H^+ , se disuelve precipitado para contrarrestar la perdida de OH^- ya que se produce la reacción


$$H^+ + OH^- \rightleftharpoons H_2O$$

Diagramas de solubilidad

Solubilidad del KCl en H₂O

Efecto de ion común producido por el K₂CrO₄